|--|

| CODES, SYMBOLS    |      |               |                               |              |              |            |             |              |  |
|-------------------|------|---------------|-------------------------------|--------------|--------------|------------|-------------|--------------|--|
| DRAWING<br>NUMBER | SHT. |               |                               | DRAWING TITL | E            |            | DWG<br>REV. | BOM<br>REV.  |  |
| A-02-01           | 1    | CODE FOR LIN  |                               | ON           |              |            | 0           | -            |  |
| A-02-01           | 2    | CODE FOR LIN  | ODE FOR LINE IDENTIFICATION   |              |              |            |             |              |  |
| A-02-01           | 3    | CODE FOR LIN  | ODE FOR LINE IDENTIFICATION   |              |              |            |             |              |  |
| A-02-01           | 4    | CODE FOR LIN  | DE FOR LINE IDENTIFICATION    |              |              |            |             |              |  |
| A-02-01           | 5    | CODE FOR LIN  | DDE FOR LINE IDENTIFICATION 0 |              |              |            |             |              |  |
| A-02-01           | 6    | CODE FOR LIN  | DDE FOR LINE IDENTIFICATION 0 |              |              |            |             |              |  |
| A-02-01           | 7    | CODE FOR LIN  | ODE FOR LINE IDENTIFICATION A |              |              |            |             |              |  |
| A-02-01           | 8    | CODE FOR LIN  | ODE FOR LINE IDENTIFICATION A |              |              |            |             |              |  |
| A-02-02           | 1    | SYMBOLS       |                               |              |              |            | Α           | -            |  |
| A-02-02           | 2    | SYMBOLS       |                               |              |              |            | В           | -            |  |
| A-02-02           | 3    | SYMBOLS       |                               |              |              |            | В           | -            |  |
| A-02-02           | 4    | SYMBOLS       |                               |              |              |            | В           | -            |  |
| A-02-03           | 1    | METRIC CONVE  | ERSION                        |              |              |            | 0           | -            |  |
| A-02-03           | 2    | METRIC CONVE  | ERSION                        |              |              |            | 0           | -            |  |
| A-02-04           | 1    | MISCELLANEO   | US ABBREVIAT                  | IONS         |              |            | 0           | -            |  |
|                   |      |               |                               |              |              |            |             |              |  |
|                   |      | Sa            | sk <b>Power</b>               |              | ON STANDARDS | 2          |             |              |  |
|                   | A    | PPROVAL       | DESIGN CHK                    | DRN. ARU     |              | J          |             |              |  |
|                   |      | MOEN          | A. UHREN                      | CHKD.        |              | INDEX      |             |              |  |
|                   |      |               |                               | 2016-10-20   |              |            |             |              |  |
|                   | D    | ATE OF ISSUE: | 2016/11/08                    | DRAWING NO:  | A-02-INDEX   | SHEET 1 OF | <b>1</b> R  | EV. <b>F</b> |  |

## **OVERHEAD PRIMARY LINE IDENTIFICATION**

OVERHEAD PRIMARY LINES ARE DESCRIBED USING 9 BLOCKS. THESE BLOCKS ARE EXPLAINED BELOW.



#### **BLOCK NO.1**

INDICATES THE POSITION OF THE GROUP OF PHASES. OMITTED IF DESCRIBING SINGLE PHASE CIRCUITS AND THE TOP CIRCUIT ON THE STRUCTURE FOR MULTIPLE CIRCUIT LINES.

#### BLOCK NO. 2

INDICATES THE NUMBER OF PHASES IN THE GROUP. OMITTED IF DESCRIBING SINGLE PHASE CIRCUITS.

#### **BLOCK NO. 3**

INDICATES THE PRESENCE OF NEUTRAL/SHIELD WIRES IN THE GROUP. OMITTED IF NO NEUTRAL/SHIELD WIRE PRESENT.

### BLOCK NO. 4

INDICATES THE CONSTRUCTION CODE LETTER.

#### BLOCK NO. 5

INDICATES THE PHASE MULTIPLIER GIVING THE NUMBER OF PHASES IN THE GROUP, FOLLOWED BY AN 'x'. OMITTED FOR SINGLE PHASE CIRCUITS, OR IF ALL PHASES ARE IDENTICAL.

### BLOCK NO. 6

INDICATES THE NUMBER OF CONDUCTORS PER PHASE IN THE GROUP. OMITTED IF ONLY ONE CONDUCTOR PER PHASE.

#### **BLOCK NO. 7**

INDICATES THE CONDUCTOR SIZE.

### BLOCK NO. 8

INDICATES THE OPERATING VOLTAGE.

### BLOCK NO. 9

INDICATES THE INSULATED VOLTAGE. OMITTED IF INSULATED VOLTAGE IS SAME AS OPERATING VOLTAGE.

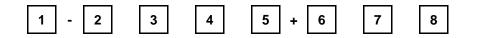
| Sask <b>Power</b> - DISTRIBUTION STANDARDS |             |      |             |         |              |               |
|--------------------------------------------|-------------|------|-------------|---------|--------------|---------------|
| DRN.                                       | DESIGN CHK. | VAL  | 0005 500    |         |              |               |
| CHKD.                                      |             |      |             |         | CODE FOR     | אר            |
| DATE                                       | DATE        | DATE |             |         |              |               |
| DATE OF ISSUE 2007/04/16                   |             |      | DRAWING NO: | A-02-01 | SHEET 1 OF 8 | REV. <b>0</b> |

## APPLICATION OF LINE IDENTIFICATION CODE FOR OVERHEAD PRIMARY LINES

| BLOCK<br>NUMBER              | 2                       | 4                             | 7                                                                                          | 8                                                                     |
|------------------------------|-------------------------|-------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| DESCRIPTION                  | NUMBER<br>OF<br>PHASES. | TYPE<br>OF<br>CONSTRUCTION.   | GAUGE NO. AND KIND<br>OF CONDUCTOR OR<br>CODE NAME IN THE<br>CASE OF ACSR AND<br>ALUMINUM. | VOLTAGE, IN kV,<br>NORMALLY LINE. IF<br>SINGLE PHASE Y,<br>TO GROUND. |
| EXAMPLE                      | 3                       | D                             | RAVEN                                                                                      | 25                                                                    |
| EXPLANATION<br>OF<br>EXAMPLE | 3 PHASE<br>WIRES        | DELTA<br>CONSTRUCTION<br>TYPE | 1/0 ALUMINUM<br>CONDUCTOR, STEEL<br>REINFORCED                                             | 25 kV,<br>LINE TO LINE                                                |

3D - RAVEN - 25

OTHER EXAMPLES:


| V – 6HICON – 14.4 | <ul> <li>SINGLE PHASE #6 HICON, VERTICAL CONSTRUCTION,<br/>14.4 kV LINE TO GROUND.</li> </ul> |
|-------------------|-----------------------------------------------------------------------------------------------|
| 3X – SPARROW – 25 | = 3 PHASE SPARROW (#2 ACSR), ALL PHASE WIRES ON<br>CROSSARM, 25 kV, LINE TO LINE.             |

3D – 2xRAVEN, PIGEON – 25 = 3 PHASE, TWO PHASES RAVEN (1/0 ACSR), ON PHASE PIGEON (3/0 ACSR), 25 kV, LINE TO LINE.

| Sask <b>Power</b> - DISTRIBUTION STANDARDS |             |       |             |         |                                |               |
|--------------------------------------------|-------------|-------|-------------|---------|--------------------------------|---------------|
| DRN.                                       | DESIGN CHK. | APPRO | VAL         |         |                                |               |
| CHKD.                                      |             |       |             |         | CODE FOR<br>LINE IDENTIFICATIO | אר            |
| DATE                                       | DATE        | DATE  |             |         |                                |               |
| DATE OF ISSUE                              | 2007/04/16  |       | DRAWING NO: | A-02-01 | SHEET 2 OF 8                   | REV. <b>0</b> |

## **OVERHEAD SECONDARY LINE IDENTIFICATION**

OVERHEAD SECONDARY LINES ARE DESCRIBED USING 8 BLOCKS. THESE BLOCKS ARE EXPLAINED BELOW.



### **BLOCK NO.1**

INDICATES IF THE CIRCUIT TYPE IS STREET LIGHT, NEUTRAL OR SECONDARY. OMITTED IF CIRCUIT TYPE IS SECONDARY.

### **BLOCK NO. 2**

INDICATES THE CONSTRUCTION CODE LETTER. OMITTED IF CONSTRUCTION CODE IS 1R, NB, QX, DX, OR TX.

### **BLOCK NO. 3**

**INDICATES THE NUMBER OF RUNS ON CONDUCTORS PER PHASE. OMITTED IF RUNS IS** '1'.

### **BLOCK NO. 4**

INDICATES THE NUMBER OF PHASES IN THE GROUP, FOLLOWED BY AN 'x'. OMITTED IF CIRCUIT TYPE IS NEUTRAL, SINGLE PHASE OR CONSTRUCTION STYLE IS QX, DX OR TX.

## BLOCK NO. 5

INDICATES THE PHASE CONDUCTOR SIZE.

### **BLOCK NO. 6**

INDICATES THE NEUTRAL CONDUCTOR SIZE. OMITTED IF CONSTRUCTION CODE IS QX, DX, OR TX.

### BLOCK NO. 7

INDICATES CONSTRUCTION STYLE FOR TYPES QX, DX, OR TX. OMITTED FOR ALL OTHER CONSTRUCTION STYLES.

### **BLOCK NO. 8**

INDICATES THE SECONDARY OPERATING VOLTAGE.

### **BLOCK NO. 9**

INDICATES THE INSULATED VOLTAGE. OMITTED IF INSULATED VOLTAGE IS SAME AS OPERATING VOLTAGE.

| Sask <b>Power</b> - DISTRIBUTION STANDARDS |             |       |             |         |              |               |
|--------------------------------------------|-------------|-------|-------------|---------|--------------|---------------|
| DRN.                                       | DESIGN CHK. | APPRC | VAL         |         |              |               |
| CHKD.                                      |             |       |             |         | CODE FOR     | אר            |
| DATE                                       | DATE        | DATE  |             |         |              |               |
| DATE OF ISSUE 2007/04/16                   |             |       | DRAWING NO: | A-02-01 | SHEET 3 OF 8 | REV. <b>0</b> |

## APPLICATION OF LINE IDENTIFICATION CODE FOR OVERHEAD SECONDARY LINES

| BLOCK<br>NUMBER              | 3                                             | 5                             | 8                          |
|------------------------------|-----------------------------------------------|-------------------------------|----------------------------|
| DESCRIPTION                  | NUMBER<br>OF<br>RUNS.                         | GAUGE NO.<br>OF<br>CONDUCTOR. | CONSTRUCTION<br>STYLE      |
| EXAMPLE                      | 2x                                            | 1/0                           | QX                         |
| EXPLANATION<br>OF<br>EXAMPLE | 2 RUNS OF 3<br>PHASE ON<br>SINGLE PIN<br>RACK | 1/0<br>PHASE<br>CONDUCTOR     | QUADRAPLEX<br>CONSTRUCTION |

## 2x(1/0) QX

### **OTHER EXAMPLES:**

- N 1/0 = 1/0 SECONDARY NEUTRAL
- #2 TX 480 = #2 TRIPLEX SECONDARY, 480 V.
- 3R2x2/0 + 2/0 = SECONDARY OF TWO 2/0 AND A 2/0 NEUTRAL ON A 3 PIN RACK.
- X3xRAVEN = 3 PHASE RAVEN ON A CROSSARM.
- ST 1/0 QX = 1/0 QUADRAPLEX FOR STREET LIGHT CONTROL CIRCUIT.

| Sask <b>Power -</b> DISTRIBUTION STANDARDS |             |          |             |         |                                |               |
|--------------------------------------------|-------------|----------|-------------|---------|--------------------------------|---------------|
| DRN.                                       | DESIGN CHK. | APPROVAL |             |         |                                |               |
| CHKD.                                      |             |          |             |         | CODE FOR<br>LINE IDENTIFICATIO | N             |
| DATE                                       | DATE        | DATE     |             |         |                                |               |
| DATE OF ISSUE 2007/04/16                   |             |          | DRAWING NO: | A-02-01 | SHEET 4 OF 8                   | REV. <b>0</b> |

# **CONSTRUCTION CODE LETTER DEFINITIONS**

| v            | -   | INDICATES VERT             |                                                                                                                                                                                     |              |           |                   |               |  |  |  |
|--------------|-----|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-------------------|---------------|--|--|--|
| x            | -   | INDICATES CROS<br>CROSSARM | NDICATES CROSSARM CONSTRUCTION WILL ALL PHASE WIRES THE<br>CROSSARM                                                                                                                 |              |           |                   |               |  |  |  |
| XS           | -   | SAME AS 'X', ONL           | SAME AS 'X', ONLY ON STEEL POLE.                                                                                                                                                    |              |           |                   |               |  |  |  |
| D            | -   |                            | ELTA, INDICATES WOOD CROSSARM CONSTRUCTION WITH THE OUTSIDE<br>VIRES ON THE CROSSARM AND THE CENTER WIRE ON A SKY PIN                                                               |              |           |                   |               |  |  |  |
| Α            | -   | INDICATES ALLE             | NDICATES ALLEY ARM CONSTRUCTION                                                                                                                                                     |              |           |                   |               |  |  |  |
| 1R, NE       | 3 - | UNIMOUNT.                  | IDICATES SINGLE WIRE CONSTRUCTION OF A ONE PIN RACK OR<br>NIMOUNT.<br>OSTLY URBAN USAGE                                                                                             |              |           |                   |               |  |  |  |
| UG           | -   | LINE IS UNDERGE            | ROUND                                                                                                                                                                               |              |           |                   |               |  |  |  |
| н            | -   | H-FRAME STRUC              | TURE C                                                                                                                                                                              | ONSTRUCTION  | Į         |                   |               |  |  |  |
| HS           | -   | H-FRAME (HIGH S            | TRUNG                                                                                                                                                                               | S) STRUCTURE | CONSTRUC  | TION              |               |  |  |  |
| т            | -   | TOWER STEEL LA             | ATTICE                                                                                                                                                                              | STRUCTURE C  |           | ΓΙΟΝ              |               |  |  |  |
| w            | -   | WISHBONE STRU              | CTURE                                                                                                                                                                               | CONSTRUCTIO  | N         |                   |               |  |  |  |
| G            | -   | GULFPORT STRU              | CTURE                                                                                                                                                                               | (2 POLE WOOL | ) CONSTR  | UCTION            |               |  |  |  |
| Y            | -   | Y STRUCTURE CO             | ONSTRU                                                                                                                                                                              | JCTION       | -         |                   |               |  |  |  |
| S            | -   | INDICATES STEE             | L TRI-A                                                                                                                                                                             | RM CONSTRUC  | TION      |                   |               |  |  |  |
| \$           | -   | HAS BEEN ADDE              | INDICATES MODIFIED STEEL TRI-ARM CONSTRUCTION, WHERE A CROSSARM<br>HAS BEEN ADDED AND THE TWO OUTSIDE WIRES FASTENED TO IT, THE<br>CENTER WIRE REMAINING ON THE TOP TRI-ARM BRACKET |              |           |                   |               |  |  |  |
| SO           | -   | INDICATES STAN             | D OFF I                                                                                                                                                                             | NSULATOR CO  | NSTRUCTIO | ON                |               |  |  |  |
| LA           | -   | INDICATES LAMIN            |                                                                                                                                                                                     | ARM CONSTRU  | CTION     |                   |               |  |  |  |
| SC           | -   | SIDE CROSSARM              | SIDE CROSSARM, USED FOR URBAN SECONDARY                                                                                                                                             |              |           |                   |               |  |  |  |
|              |     |                            |                                                                                                                                                                                     |              |           |                   |               |  |  |  |
|              |     | SaskP                      | ower                                                                                                                                                                                | - DISTRIBUT  | ION STAN  | DARDS             |               |  |  |  |
| DRN.         | DE  | SIGN CHK.                  | APPRC                                                                                                                                                                               | DVAL         |           | CODE FOR          |               |  |  |  |
| CHKD.        |     | <b>-</b> -                 | D 4 7 -                                                                                                                                                                             |              |           | LINE IDENTIFICATI | ON            |  |  |  |
|              |     |                            | DATE                                                                                                                                                                                |              | A 02 04   |                   |               |  |  |  |
| DATE OF ISSU |     | JU1/U4/10                  |                                                                                                                                                                                     | DRAWING NO:  | A-UZ-U I  | SHEET 5 OF 8      | REV. <b>0</b> |  |  |  |

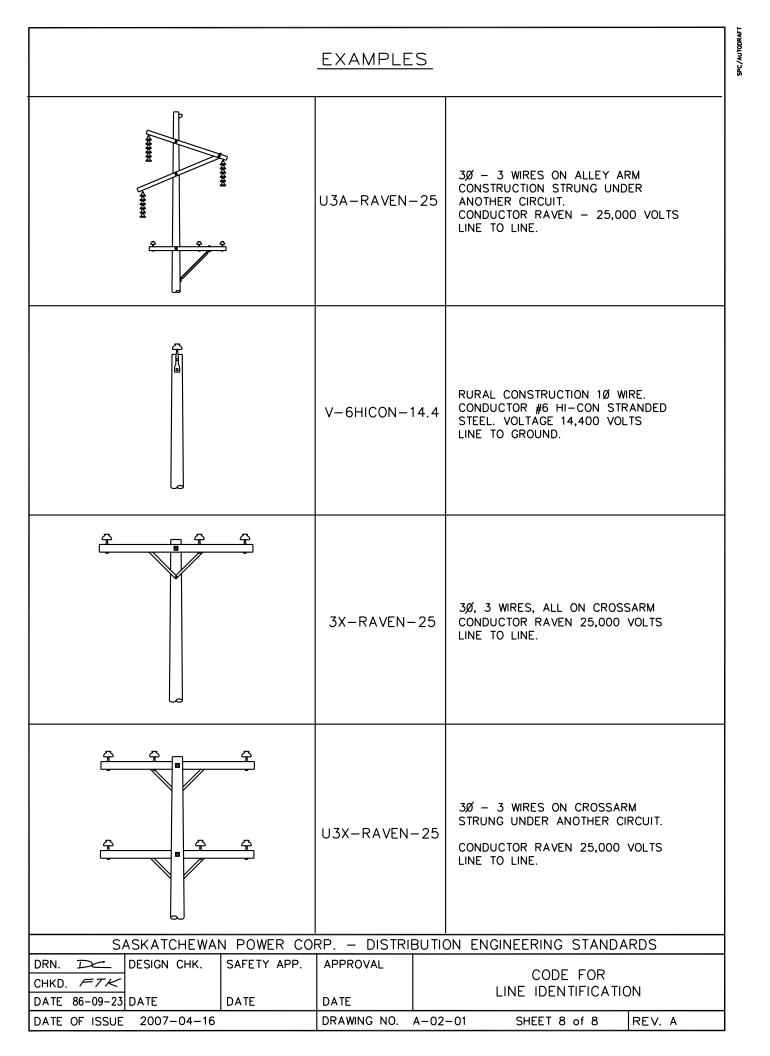
# AUXILIARY PRIMARY SYMBOLS

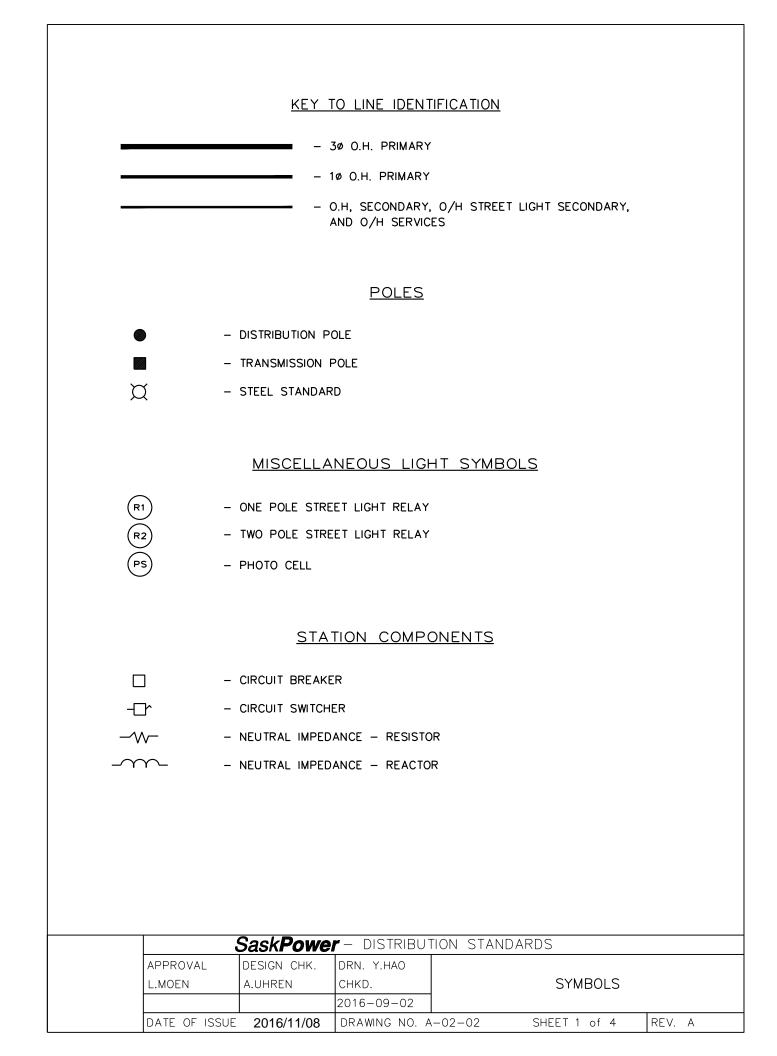
- U FOR UNDER, WHEN PLACED AHEAD OF ALL OTHER SYMBOLS IN A DESIGNATION INDICATES THAT THE CIRCUIT IS STRUNG UNDER ANOTHER CIRCUIT ON THE SAME POLE.
- R FOR RIGHT, IN CONJUNCTION WITH DOUBLE CIRCUITS INDICATES THE RIGHT-HAND CIRCUIT WHEN LOOKING DOWN THE LINE WITH THE BACK TO THE NORMAL SOURCE OF SUPPLY.
- L FOR LEFT, AS 'R' ABOVE, BUT REFERS TO LEFT HAND CIRCUIT.

## **CONDUCTOR DESCRIPTION ABBREVIATIONS**

- HICON HICON H.S.C. 130 3 STRAND STEEL
- (W)HICON HICON "WIRE WRAPPED'
- CU SOLID COPPER
- STR. CU STRANDED COPPER
- CW COPPERWELD OR COPPERWELD COPPER, DEPENDING ON GAUGE NO.
- ACSR ALUMINUM CONDUCTOR STEEL REINFORCED
- ACSR-SB SMOOTH BODY ACSR
- CCSR COPPER COATED STEEL REINFORCED
- ALW ALLUMOWELD
- AL ALL ALUMINUM
- DX DUPLEX SECONDARY CONDUCTOR
- TX TRIPLEX SECONDARY CONDUCTOR
- QX QUADRUPLEX SECONDARY CONDUCTOR

| Sask <b>Power -</b> DISTRIBUTION STANDARDS |             |       |             |         |              |               |
|--------------------------------------------|-------------|-------|-------------|---------|--------------|---------------|
| DRN.                                       | DESIGN CHK. | APPRC | VAL         |         |              |               |
| CHKD.                                      |             |       |             |         | CODE FOR     | אר            |
| DATE                                       | DATE        | DATE  |             |         |              |               |
| DATE OF ISSUE 2007/04/16                   |             |       | DRAWING NO: | A-02-01 | SHEET 6 OF 8 | REV. <b>0</b> |


# KEY TO LINE IDENTIFICATION


|         | - O/H PRIMARY - LL=>72KV,          |
|---------|------------------------------------|
|         | - O/H PRIMARY - LL=25KV, > 1 PHASE |
|         | - O/H PRIMARY - LG=14.4KV, 1 PHASE |
|         | – O/H SECONDARY                    |
| ——FO——— | - O/H FIBRE OPTICS                 |
|         | - O/H STREET LIGHT                 |

# CODE NAMES FOR ACSR AND ALUMINUM CONDUCTORS

| HERRING<br>PICKEREL<br>SPARROW<br>ROBIN | _<br>_<br>_ | #6 ACSR-SB TYPE 200%<br>#2 ACSR-SB TYPE 200%<br>#2 ACSR<br>#1 ACSR |
|-----------------------------------------|-------------|--------------------------------------------------------------------|
| RAVEN                                   |             | 1/0 ACSR                                                           |
|                                         |             | 2/0 ACSR                                                           |
|                                         |             | 3/0 ACSR                                                           |
| PENGUIN                                 |             | 4/0 ACSR                                                           |
| BRAHMA                                  |             | 203.2 KCMIL 16/19 ACSR                                             |
|                                         |             | 266.8 KCMIL 26/7 ACSR                                              |
| LINNET                                  |             | 336.4 KCMIL 26/7 ACSR                                              |
| PELICAN                                 |             | 477 KCMIL 18/1 ACSR                                                |
| HAWK                                    | —           | 477 KCMIL 26/7 ACSR                                                |
| GROSBEAK                                | . —         | 636 KCMIL 26/7 ACSR                                                |
| DRAKE                                   | —           | 795 KCMIL 26/7 ACSR                                                |
| CURLEW                                  | _           | 1033.5 KCMIL 54/7 ACSR                                             |
| IRIS                                    | _           | #2 AL                                                              |
| ASTER                                   |             | 2/0 AL                                                             |
| PHLOX                                   |             | 3/0 AL                                                             |
| OXLIP                                   |             | 4/0 AL                                                             |
| DAISY                                   |             | 266.8 KCMIL AL                                                     |
| TULIP                                   |             | 336.4 KCMIL AL                                                     |
| COSMOS                                  |             | 477 KCMIL AL                                                       |

| SaskPower - DISTRIBUTION STANDARDS |            |                   |         |          |         |         |  |  |
|------------------------------------|------------|-------------------|---------|----------|---------|---------|--|--|
| APPROVAL DESIGN CHK. DRN. DC       |            |                   |         |          |         |         |  |  |
|                                    |            | СНКД. <i>ГЕТК</i> | CODE    | FOR LINE | IDENTIF | ICATION |  |  |
|                                    |            | 86-09-23          |         |          |         |         |  |  |
| DATE OF ISSUE                      | 2010-04-21 | DRAWING NO.       | A-02-01 | SHEET 7  | of 8    | REV. A  |  |  |





### METERING POINTS

- METERING POINT (COMMERCIAL & RESIDENTIAL)
  - METERING POINT (PRIMARY)

#### STREET LIGHTS

- ALL STREET LIGHTS USE THE SAME SYMBOL

## SYSTEM PROTECTION DEVICES

#### RECLOSER



\_

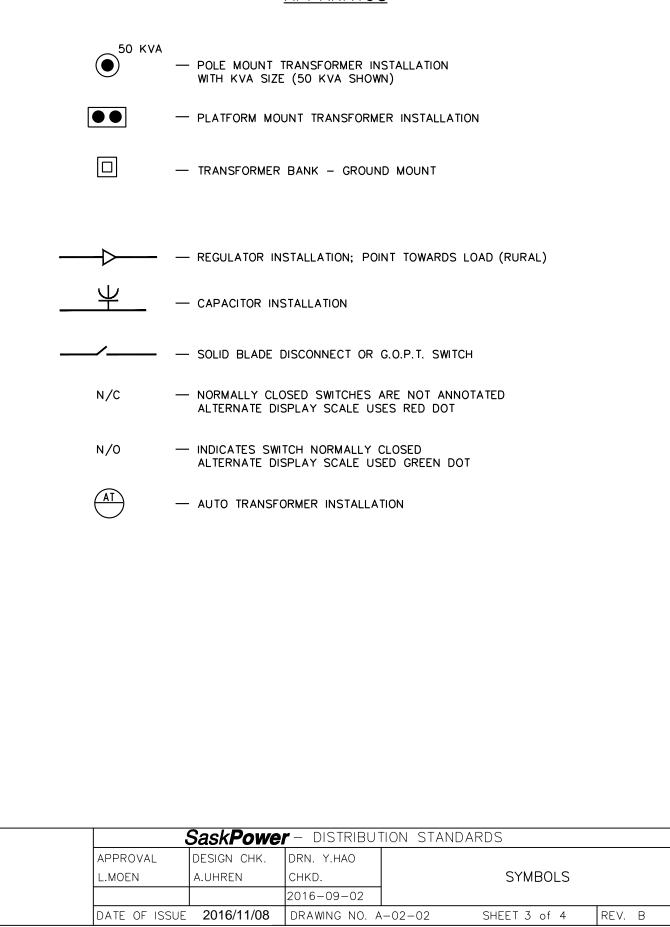
| - | INDICATE | TYPE  | IN | TOP | HALF | OF | CIRCLE | WITH | RATING, | (AMPS), |
|---|----------|-------|----|-----|------|----|--------|------|---------|---------|
|   | IN BOTTO | M HAL | _F |     |      |    |        |      |         |         |

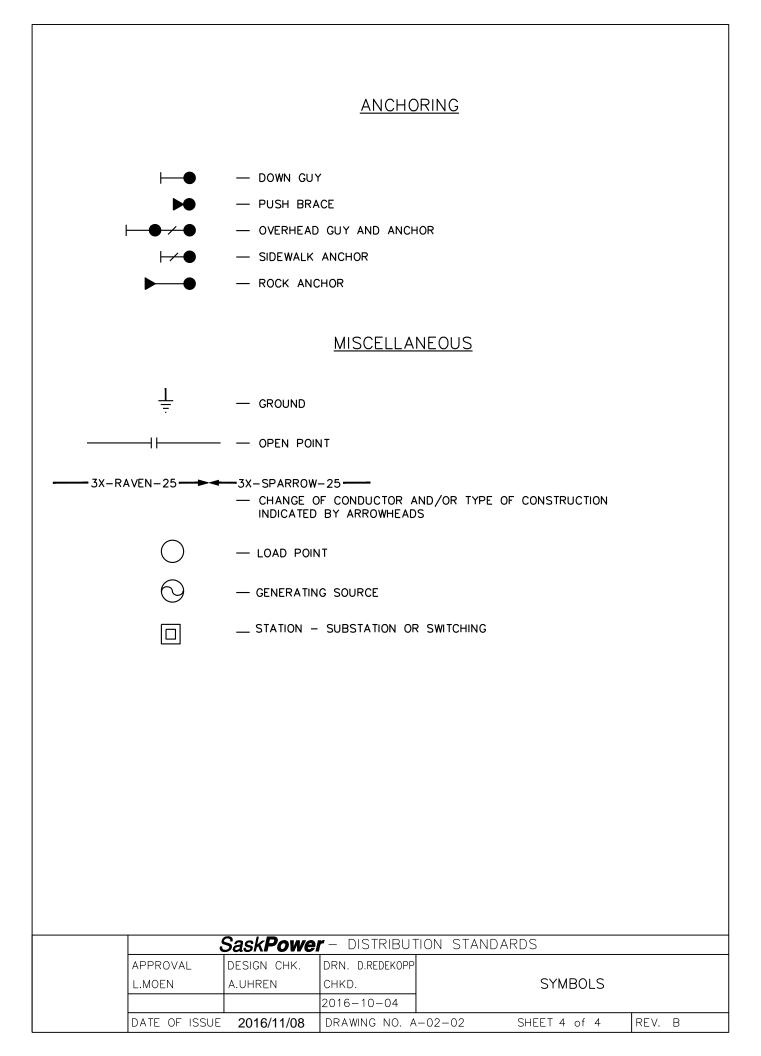
| ノ |  |  |
|---|--|--|
|   |  |  |

- ARROW INDICATES DIRECTION OF FEED - GIS SYMBOLS DON'T SHOW TYPE/SIZE OR AN ARROW ANYMORE THIS IS JUST KEPT IN THE CSM FOR CLARIFICATION ON SOME DRAWING

#### **EXAMPLES**




| Ē) — —                                       | R.V.E. | WITH | 280 | AMP |
|----------------------------------------------|--------|------|-----|-----|
| <u>v                                    </u> | PHASE  | TRIP |     |     |


**FUSES** 

| $\langle 12 \rangle$ | — | TYPE "T" OR TYPE "X" FUSE LINK; 12 AMP FUSE INDICATED       |                       |
|----------------------|---|-------------------------------------------------------------|-----------------------|
| (12)                 | _ | TYPE "T" OR TYPE "X" FUSE LINK HEAVY; 12 AMP FUSE INDICATED |                       |
| $\langle s \rangle$  | _ | CUTOUT WITH SOLID FUSE LINK                                 | FUSES AT<br>ALTERNATE |
| 10                   | — | TYPE "N" FUSE LINK; 10 AMP FUSE INDICATED                   | DISPLAY SCALES        |
| 10                   | _ | TYPE "N" FUSE LINK HEAVY; 10 AMP FUSE INDICATED             |                       |
| $\mathcal{O}$        |   | FUSE AT CONNECTIVITY SCALE                                  |                       |

|               | Sask <b>Powe</b> | r – Distribut   | TION STA | NDARDS       |        |
|---------------|------------------|-----------------|----------|--------------|--------|
| APPROVAL      | DESIGN CHK.      | DRN. D.REDEKOPP |          |              |        |
| L.MOEN        | A.UHREN          | CHKD.           |          | SYMBOLS      |        |
|               |                  | 2016-10-04      |          |              |        |
| DATE OF ISSUE | 2016/11/08       | DRAWING NO. A   | -02-02   | SHEET 2 of 4 | REV. B |

## **APPARATUS**





## LENGTH

SPC/AUTODRAFT

FROM IMPERIAL25.4 x INCHES = MILLIMETRESTO METRIC0.305 x FEET = METRES1.61 x MILES = KILOMETRES

| FROM METRIC | $0.0394 \times MILLIMETRES = INCHES$            |
|-------------|-------------------------------------------------|
| TO IMPERIAL | $3.281 \times METRES = FEET$                    |
|             | $0.621 \times \text{KILOMETRES} = \text{MILES}$ |

# AREA

| FROM IMPERIAL | $645.2 \times SQUARE INCHES = SQUARE MILLIMETRES$ |
|---------------|---------------------------------------------------|
| TO METRIC     | 0.093 x SQUARE FEET = SQUARE METRES               |
|               | 0.836 x SQUARE YARDS = SQUARE METRES              |
|               | 2.59 x SQUARE MILES = SQUARE KILOMETRES           |
|               | $0.405 \times ACRES = HECTARES$                   |

| FROM METRIC | $0.00155 \times SQUARE MILLIMETRES = SQUARE INCHES$ |
|-------------|-----------------------------------------------------|
| TO IMPERIAL | 10.75 x SQUARE METRES = SQUARE FEET                 |
|             | 1.196 x SQUARE METRES = SQUARE YARDS                |
|             | 0.386 x SQUARE KILOMETRES = SQUARE MILES            |
|             | $2.47 \times \text{HECTARES} = \text{ACRES}$        |

## VOLUME

| FROM IMPERIAL<br>TO METRIC<br>16387 × CUBIC INCHES = CUBIC MILLIMETRES<br>16.387 × CUBIC INCHES = CUBIC CENTIMETRES<br>0.0283 × CUBIC FEET = CUBIC METRES<br>0.765 × CUBIC YARDS = CUBIC METRES<br>4.546 × GALLONS = LITRES |                                                                                                                                                                                                                         |             |             |              |          |                   |      |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--------------|----------|-------------------|------|---|
|                                                                                                                                                                                                                             | FROM METRIC<br>TO IMPERIAL0.000061 × CUBIC MILLIMETRES = CUBIC INCHES<br>0.061 × CUBIC CENTIMETRES = CUBIC INCHES<br>35.33 × CUBIC METRES = CUBIC FEET<br>1.307 × CUBIC METRES = CUBIC YARDS<br>0.22 × LITRES = GALLONS |             |             |              |          |                   |      |   |
|                                                                                                                                                                                                                             | S                                                                                                                                                                                                                       | ASKATCHEWA  | N POWER COF | RP. – DISTRI | BUTION E | NGINEERING STANDA | RDS  |   |
| DRN.                                                                                                                                                                                                                        |                                                                                                                                                                                                                         | DESIGN CHK. | SAFETY APP. | APPROVAL     |          |                   |      |   |
| CHKD                                                                                                                                                                                                                        | . FTK                                                                                                                                                                                                                   |             |             |              |          | METRIC CONVERSION | N    |   |
| DATE                                                                                                                                                                                                                        | 86-10-22                                                                                                                                                                                                                | DATE        | DATE        | DATE         |          |                   |      |   |
| DATE                                                                                                                                                                                                                        | OF ISSUE                                                                                                                                                                                                                | 87-02-01    |             | DRAWING NO.  | A-02-03  | SHEET 1 of 2      | REV. | 0 |

MASS

FROM IMPERIAL  $454 \times POUNDS = GRAMS$ 0.454 x POUNDS = KILOGRAMS TO METRIC  $0.907 \times TONS = TONNES$ FROM METRIC  $0.0022 \times GRAMS = POUNDS$ 2.20 × KILOGRAMS = POUNDS TO IMPERIAL  $1.10 \times \text{TONNE} = \text{TONS}$ FORCE 4.448 x POUNDS FORCE = NEWTONS FROM IMPERIAL TO METRIC FROM METRIC  $0.225 \times NEWTONS = POUNDS FORCE$ TO IMPERIAL NOTE: FORCE (WEIGHT) = MASS x ACCELERATION (DUE TO GRAVITY) N = kg x m/s<sup>2</sup> OR lbf = lb x ft/s<sup>2</sup> GRAVITATIONAL ACCELERATION =  $9.81 \text{ m/s}^2$  OR  $32.2 \text{ ft/s}^2$ VELOCITY FROM IMPERIAL  $0.305 \times FEET PER SECOND = METRES PER SECOND$ TO METRIC 1.61 x MILES PER HOUR = KILOMETRES PER HOUR FROM METRIC 3.28 X METRES PER SECOND = FEET PER SECOND TO IMPERIAL 0.621 x KILOMETRES PER HOUR = MILES PER HOUR PRESSURE FROM IMPERIAL 6.895 x POUNDS FORCE PER SQUARE INCH = KILOPASCALS TO METRIC FROM METRIC 0.145 x KILOPASCALS = POUNDS FORCE PER SQUARE INCH TO IMPERIAL TEMPERATURE FROM IMPERIAL  $(^{\circ}F-32) \times 0.556 = ^{\circ}C$  (DEGREE CELSIUS) TO METRIC FROM METRIC  $(\circ C \times 1.8) + 32 = \circ F$  (DEGREE FAHRENHEIT) TO IMPERIAL SASKATCHEWAN POWER CORP. - DISTRIBUTION ENGINEERING STANDARDS DRN. DC DESIGN CHK. SAFETY APP. APPROVAL CHKD. FTK METRIC CONVERSION DATE 86-10-23 DATE DATE DATE

DRAWING NO. A-02-03

SHEET 2 of 2

REV. 0

87-02-01

DATE OF ISSUE

## UNITS OF IMPERIAL MEASURE

Ib = POUNDS (MASS)tn = TON lbf = POUND (FORCE)
psi = POUND (FORCE) PER SQUARE INCH

SPC/AUTODRAF

## UNITS OF METRIC MEASURE

 L = LITRE = 1000 cm<sup>3</sup> mL = MILLILITRE g = GRAM mg = MILLIGRAM kg = KILOGRAM t = TONNE = 1000 kg N = NEWTON Pa = PASCAL = N/m<sup>2</sup> kPa = KILOPASCAL =  $kN/m^2$ 

VARIOUS

SIN = SINE OF AN ANGLE COS = COSINE OF AN ANGLE TAN = TANGENT OF AN ANGLE AWG = AMERICAN WIRE GUAGE DIA = DIAMETER kcmil = THOUSAND CIRCULAR MILS (FORMERLY MCM) HT = HEIGHT

 SASKATCHEWAN POWER CORP. – DISTRIBUTION ENGINEERING STANDARDS

 DRN.
 Design CHK.
 SAFETY APP.
 APPROVAL
 MISCELLANEOUS

 CHKD.
 FTK
 DATE
 DATE
 DATE
 DATE

 DATE
 05 -02 -01
 DRAWING NO.
 A-02 -04
 SHEET 1 of 1
 REV. 0